AN APPLICATION OF PERSISTENT HOMOLOGY ON GRASSMANN MANIFOLDS FOR
THE DETECTION OF SIGNALS IN HYPERSPECTRAL IMAGERY

Sofya Chepushtanova', Michael Kirby'*, Chris Peterson', Lori Ziegelmeier®

IDepartment of Mathematics, Colorado State University, Fort Collins, CO, USA
?Department of Mathematics, Statistics, and CS, Macalester College, Saint Paul, MN, USA

ABSTRACT

‘We present an application of persistent homology to the detection of
chemical plumes in hyperspectral movies. The pixels of the raw hy-
perspectral data cubes are mapped to the geometric framework of the
real Grassmann manifold G (k, n) (whose points parameterize the k-
dimensional subspaces of R™) where they are analyzed, contrasting
our approach with the more standard framework in Euclidean space.
An advantage of this approach is that it allows the time slices in a
hyperspectral movie to be collapsed to a sequence of points in such
a way that some of the key structure within and between the slices is
encoded by the points on the Grassmann manifold. This motivates
the search for topological structure, associated with the evolution of
the frames of a hyperspectral movie, within the corresponding points
on the Grassmann manifold. The proposed framework affords the
processing of large data sets, such as the hyperspectral movies ex-
plored in this investigation, while retaining valuable discriminative
information.

Index Terms— Grassmann manifold, persistent homology, hy-
perspectral signal detection, subspaces, topological data analysis

1. INTRODUCTION

Hyperspectral imaging (HSI) involves the collection of detailed
spectral information from a scene. A digital hyperspectral image can
be considered as a three dimensional array consisting of two spatial
dimensions and one spectral dimension. The spectral data consists
of energy collected across tens to hundreds of narrow wavelength
bands. Such images are called hyperspectral data cubes and are used
in various hyperspectral data processing applications, e.g., material
identification, land cover classification, or anomaly detection [1].

Including a temporal dimension in the process of data acquisition
provides dynamic hyperspectral information in a 4-way array. Such
a sequence of hyperspectral cubes collected at short time intervals
is effectively a hyperspectral movie capturing potentially interesting
spectral changes in a scene such as the release of a chemical plume.
An important application of dynamic hyperspectral imaging is in the
surveillance of the atmosphere for chemical or biological agents.

In this study, we consider an application of persistent homology
(PH) to the detection of chemical plumes in hyperspectral imagery.
PH is a relatively new tool in topological data analysis (TDA) that
provides a multiscale method for analyzing the topological structure
of data sets [2,3]. The direct application of PH to large data sets,
such as sequences of hyperspectral data cubes, can be prohibitive
due to computational intractability. We overcome this issue by en-
coding the frames of a hyperspectral movie as points on a Grassmann
manifold [4]. The real Grassmannian provides a paramterization of
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k-dimensional linear subspaces of R", and a geometric framework
for the representation of a set of raw hyperspectral data points by
a single manifold point. This approach affords a form of compres-
sion while retaining pertinent topological structure. In this setting,
it becomes feasible to utilize PH to analyze larger volumes of hy-
perspectral data as the high computational cost of PH applied to the
original data space is greatly reduced.

‘We apply this approach to the detection of chemical signals in the
collection of data cubes of the Long-Wavelength Infrared (LWIR)
data set [5]. Using this framework, it is possible to generate topo-
logical signals that capture changes in the scene after a chemical
release.

We organize the paper in the following order: Section 2 describes
PH while the Grassmannian framework is explained in Section 3.
Computational experiments are discussed in Section 4, followed by
conclusions in Section 5.

2. PERSISTENT HOMOLOGY

Persistent homology is a computational approach to topology that
allows one to answer basic questions about the structure of point
clouds in data sets [2,3]. This procedure involves interpreting a point
cloud as a noisy sampling of a topological space. Aspects of this
topological space are uncovered by associating, to the data cloud, a
nested sequence of simplicial complexes indexed by a scale param-
eter e. Of particular interest are e-dependent, kth order holes in the
simplicial complexes, for these provide insight into the topological
structure at different scales. For instance, zeroth order holes give the
number of connected components (clusters) of the point cloud, while
first order holes indicate the existence of topological circles, or peri-
odic phenomenon. The connectivity of the simplicial complex may
be viewed as arising from the overlapping of e-balls that cover the
data in the point cloud. As a result, these holes are a function of the
scale e. More formally, the number of kth order holes is the rank of
the associated homology of the simplicial complex (also called the
kth Betti number). In persistent homology, one seeks structures that
persist over a range of scales. Thus, PH tracks homology classes of
the point cloud along the scale parameter, indicating at which € a
hole appears and for which range of e values it persists. The Betti
numbers, as functions of the scale €, can be visualized in a distinct
barcode for each dimension & [6]. Note that in this paper, all of the
information that is used to generate the PH barcodes for a point cloud
is encoded in a matrix of pairwise distances between the points.
Figure 1 shows an example of the £ = 0 and £k = 1 barcodes
generated for a point cloud sampled from the unit circle. Each hor-
izontal bar represents the birth and death of a separate homology
class, and the kth Betti number at any given parameter value e is
the number of bars that intersect the vertical line through e. For the
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Fig. 1: Bettio (top right) and Bettii (bottom right) barcodes corre-
sponding to point cloud data sampled from the unit circle (left).

circle, Bettio = Bettii = 1 which correspond to the number of
connected components and number of loops, respectively, shown by
the longest (persistent) horizontal bars in each plot. To generate the
barcodes, we use JavaPlex, a library for persistent homology and
topological data analysis [7]. In the next section, we discuss how PH
can be used for HSI signal detection.

3. THE GRASSMANNIAN FRAMEWORK

We propose using the Grassmann manifold (Grassmannian) as a
framework for detection of signals in hyperspectral imagery via
PH. The real Grassmann manifold G(k,n) parametrizes all k-
dimensional subspaces of the vector space R™ [4]. A sequence of hy-
perspectral data cubes, or subcubes taken from them, can be mapped
to points on G(k, n). Figure 2 schematically illustrates the setting.

G(k,n)

2 8 4

Fig. 2: A sequence of data cubes mapped to points on G (k,n).

Note that if Y is a point on G(k, n), it can be nonuniquely rep-
resented by an orthonormal basis U. Given a xyz-cube, one can
reshape it into an xy X z matrix Y, whose columns span a subspace
on G(k,n) with k = z and n = zy, provided z < zy. If we com-
pute the reduced singular value decomposition (SVD) Y = ULV T,
the columns of the n x k orthogonal matrix U (UTU = I) are a
basis for the column space of Y. Thus, U can be used to represent
the xyz-cube and can be identified with a point on the Grassmannian
G(k,n). Once the hyperspectral movie is mapped to a sequence of
points on G(k, n), the pairwise distances between these points may
be found using an appropriate function of the angles between sub-
spaces. For example, the chordal distance between k-dimensional
subspaces P and Q is given by d.(P, Q) = (32F_, (sin6;)*)"/? =
|| sin 8|2 and the geodesic distance is dg (P, Q) = (Zle 02)'/? =
||0]]2, where 6 is the k-dimensional vector of the principal angles
0ii=1,...,k,0< 6, <6 <...<0 < /2 between P and
Q1[8,9].

In this paper, we measure the similarity of two points with the

smallest principal angle, d, = 61, between the points. While not a
metric, this nevertheless provides a useful tool for analysis [10, 11].
In fact, we observed in our experiments that using d, resulted in
stronger topological signals than did d. and d4. Once the sequence
of cubes is mapped to G (k, n), the matrix of all pairwise “distances”
is computed, and we apply PH to generate Bettio barcodes to see
the number of connected components (clusters) in the point cloud on
the Grassmannian, corresponding to the raw HSI data.

4. EXPERIMENTAL RESULTS

In this section, we show results obtained by this approach applied
to the detection of chemical signals in the collection of data cubes
of the Long-Wavelength Infrared (LWIR) data set [5]. The LWIR
data set is collected by an interferometer in the 8-11 pm range of
the electromagnetic spectrum. During a single scanning, 256 x 256
pixel images are collected across 20 wavelengths within this range,
forming a 256 x 256 x 20 data cube. A single data collection event
consists of releasing a pre-determined quantity of Triethyl Phosphate
(TEP) into the air to create an aerosol plume for detection against
natural background. A series of 561 data cubes records the entire
event from “pre-burst” to “post-burst”, as a hyperspectral movie.

To strengthen topological signals, the experimental setting in-
cludes dimension reduction of the band space, finding the patch
in the images that contains the chemical cloud, mapping selected
(sub)cubes to the Grassmannian, computing the pairwise distances
on the manifold, and generating PH Bettio (or O-dimensional) bar-
codes for clustering. Here we use 3 (out of 20) wavelength bands
selected by the sparse support vector machine (SSVM) band selec-
tion algorithm, via classifying the TEP data points against the back-
ground points [12]. To validate our results we also determine the lo-
cation of the plume in the cubes using the adaptive-cosine-estimator
(ACE) [13].

4.1. Experiment on a Subset of Cubes

We first consider a subset of 561 TEP cubes: “pre-burst” cubes 104-
111 and cubes 112-116, containing evolving plume. (Note that cube
112 is the cube in which a plume occurs for the first time.) To
generate a Bettig barcode on these 13 cubes, a “plume location”
patch of size 4 x 8 x 3 from each cube is mapped to a point on
G(3,4 x 8) = (G(3,32). Figure 3 shows results of PH clustering
over many scales. The 0-dimensional barcode in Figure 3a has dif-
ferent numbers of connected components as the scale parameter e
increases. For instance, at the small scale of ¢ = 5 x 1074, all
the points are disconnected (13 bars are present), which is shown
schematically in Figure 3b by distinct coloring for each point. Fig-
ure 3c depicts the clustering that occurs at € = 4 x 1073, At this
scale, we have 6 clusters, with one cluster containing all the “pre-
burst” points 104-111 (shown in red), and 5 clusters each containing
isolated plume points 112 to 116, indicated by distinct colors. Later,
at e = 6 x 10, PH detects 3 clusters of points: plume points 112
and 113 join the cluster of points 104-111, and points 115 and 116
merge into a separate cluster, with point 114 staying isolated, see
Figure 3d. This can be interpreted as follows: points 112 and 113,
where the plume first develops, are closer to the “pre-plume” cluster
on (G(3, 32) than the points 114, 115, 116, as the shape of the plume
changes. In particular, PH tells us that each of the points within a
cluster are are more similar on the manifold to other points within
the cluster than to points not in the same cluster. When € is large
enough, all points merge into a single connected component.
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Fig. 3: (a) Bettip barcode generated on points on G(3, 32), corresponding to 4 X 8 X 3 subcubes 104 to 116 selected from 561 TEP data
cubes; (b) 13 isolated points 104-116 on G(3,32) ate = 5 X 1074, shown by distinct colors; (c) 6 clusters at e = 4 X 10~3: the red colored
cluster of points 104-111 and 5 isolated points 112-116, shown by distinct colors; (d) 3 clusters at e = 6 x 10™%: the cluster of points 104-113
(red), the isolated point 114 (green), and the cluster of points 115 and 116 (purple).

4.2. Experiment on All Cubes

G(3,32)

Fig. 4: Grassmannian setting for the 561 top (sky) left 4 x 8 x 3
subcubes.

This experiment includes generating Bettip barcodes using all
561 TEP cubes. Similar to the experiment in Section 4.1, we con-
sider 4 x 8 x 3 subcubes “cut out” from different areas in each image
such as the top (sky), the middle (horizon, where the plume devel-
ops), and the bottom (ground) for left, right, and center regions, re-
spectively. See Figure 4 for an illustration of left subcubes from the
sky mapped to G(3, 32).

We generate nine O-dimensional barcodes for the different regions
described above, see Figure 5. Notice the similarity of the barcodes
along the first (sky) and third (ground) rows, indicating uniformity
in these regions throughout the hyperspectral movie. In contrast, the
plume occurs and develops along the horizon. This dynamic move-
ment within the scene is reflected in the fluctuation of the barcodes,
see the second row in Figure 5.

Let us now further consider the clusters forming in the O-
dimensional barcode in Figure 5d. Recall that this barcode is gener-
ated from the 561 points corresponding to the left horizon 4 X 8 x 3
region in each data cube, i.e., the plume formation region. At scale
e = 1.5 x 1073, there are 31 bars corresponding to 31 connected
components on G(3,32), with 28 isolated points from frames 111
to 142, one cluster containing frames 134, 135, and 137, one cluster
containing frame 519, and another containing all other frames. At
scale e = 2 x 1073, we have 19 bars corresponding to 19 connected
components on G(3,32), with 18 isolated frames from 112 to 129,
and one cluster containing all the rest. Note that these bars persist
for a large range of parameter value (to just beyond 3 x 1072), in-
dicating a large degree of separation. At e = 4 x 1073, we have 13
clusters with 11 isolated frames 112-118 and 120-125, one cluster of
frames 119 and 124, and the other one containing everything else.

Note that cubes following frame 111 are where the plume first

occurs with the highest concentration of chemical and changes very
fast. PH detects separation of these points from pre-plume cubes
at multiple scales. The Grassmannian framework together with PH
treats these points as far away from each other and from the rest of
the points, therefore capturing the dynamics in the sequence of HSI
images containing the chemical.

5. CONCLUSION

In summary, we presented a geometric framework for characterizing
information in hyperspectral data cubes evolving in time. Persistent
homology was employed to aid in detecting changes in topological
structure on point clouds generated from raw HSI data under the
Grassmannian framework. We observed that, depending on the PH
parameter value €, both all-cubes and subset-of-cubes experiments
resulted in clustering that reflected the dynamical changes in the HSI
sequences of cubes of the LWIR data set.

In the first experiment, with a small subset of Triethyl Phosphate
cubes mapped to the Grassmannian, PH Bettio barcodes captured
the evolution of the plume when it first occurred and started evolv-
ing. In the second, all-cubes experiment, different regions of the
cubes were mapped to a manifold to generate barcodes. We ob-
served changes in the barcode profiles obtained along the horizon
(“plume”) line, while the other regions in the cubes resulted in sim-
ilar plots. Based on clustering results for the left horizon subcubes,
several frames with a plume were treated by PH as isolated points on
the manifold, in contrast to “pre-burst” points and points long after
the release time, all clustered together.

Having found these results promising, further research can be
done to strengthen the topological signal. We are working to em-
ploy other mappings, other (pseudo)metrics on the Grassmannian,
and Betti; barcodes. We are further making a comparative analy-
sis of no-plume and plume data cubes, based on mapping subsets of
pixels to G(1,n) where n is the number of spectral bands.
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Fig. 5: Bettio barcodes generated on selected 4 x 8 x 3 regions through all 561 TEP cubes, mapped to G(3, 32): (a) top left; (b) top middle;
(c) top right; (d) middle left; (e) center; (f) middle right; (g) bottom left; (h) bottom middle; (i) bottom right.
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