Formula Sheet

- For a differential equation of the form

$$
\frac{d x}{d t}+p(t) x(t)=q(t)
$$

the general solution is in the form

$$
x(t)=\frac{1}{\mu(t)}\left(\int \mu(t) q(t) d t+C\right),
$$

where

$$
\mu(t)=e^{\int p(t) d t}
$$

- For a differential equation of the form

$$
\frac{d x}{d t}=p(t) x+q(t) x^{n}, n \neq 0,1
$$

use the substitution $v(t)=(x(t))^{1-n}$.

- Newton's Law of Cooling: $T^{\prime}(t)=k(A-T(t))$.
- Logistic growth equation: $P^{\prime}(t)=r P(t)(1-P(t) / N)$.
- A differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. The general solution of an exact equation is of the form $F(x, y)=C$ where $\frac{\partial F}{\partial x}=M$ and $\frac{\partial F}{\partial y}=N$.

- For an initial value problem $x^{\prime}(t)=f(t, x), x\left(t_{0}\right)=x_{0}$, Euler's Method finds approximation of solution by

$$
\begin{gathered}
x_{i+1}=x_{i}+f\left(t_{i}, x_{i}\right) \Delta t \\
t_{i+1}=t_{i}+\Delta t
\end{gathered}
$$

$(i=1,2,3, \ldots)$, given a stepsize Δt.

- Errors in numerical methods:

Method	Error
Euler's	$\sim \Delta t$
Improved Euler's	$\sim(\Delta t)^{2}$
4th-Order Runge-Kutta	$\sim(\Delta t)^{4}$

- The Wronskian of two solutions $x_{1}(t)$ and $x_{2}(t)$ of the second-order linear homogeneous equation $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0$ is the determinant

$$
W\left(x_{1}, x_{2}\right)(t)=\left|\begin{array}{ll}
x_{1}(t) & x_{2}(t) \\
x_{1}^{\prime}(t) & x_{2}^{\prime}(t)
\end{array}\right| .
$$

If $W\left(x_{1}, x_{2}\right)(t) \neq 0$ for all values of t, then $x=C_{1} x_{1}+C_{2} x_{2}$ is a general solution of $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0$.

