• Table of Laplace Transforms

Functional Properties:

$f(t) = \mathfrak{L}^{-1}(F(s))$	$F(s) = \mathfrak{L}(f(t)) = \int_0^\infty e^{-st} f(t) dt$
$\boxed{ \qquad \alpha f(t) + \beta g(t) }$	$\alpha F(s) + \beta G(s)$
f'(t)	sF(s) - f(0)
f''(t)	$s^2F(s) - sf(0) - f'(0)$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - sf^{(n-2)}(0) - f^{(n-1)}(0)$
tf(t)	$-rac{d}{ds} \Big[F(s) \Big]$
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} \Big[F(s) \Big]$
$e^{at}f(t)$	F(s-a)
$u(t-c)f(t-c) \text{ (for } c \ge 0)$	$e^{-cs}F(s)$
$u(t-c)f(t) \text{ (for } c \ge 0)$	$e^{-cs}\mathfrak{L}(f(t+c))$

Specific Transforms:

$f(t) = \mathfrak{L}^{-1}(F(s))$	$F(s) = \mathfrak{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
t^n	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
te^{at}	$\frac{1}{(s-a)^2}$
$\sin(bt)$	$\frac{b}{s^2+b^2}$
$\cos(bt)$	$rac{s}{s^2+b^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$u(t-c) \text{ (for } c \ge 0)$	$\frac{e^{-cs}}{s}$

• For a differential equation of the form

$$\frac{dx}{dt} + p(t)x(t) = q(t),$$

the general solution is in the form

$$x(t) = \frac{1}{\mu(t)} \Big(\int \mu(t)q(t) \ dt + C \Big),$$

where

$$\mu(t) = e^{\int p(t)dt}$$

• For a differential equation of the form

$$\frac{dx}{dt} = p(t)x + q(t)x^n, \ n \neq 0, 1,$$

use the substitution $v(t) = (x(t))^{1-n}$.

- Newton's Law of Cooling: T'(t) = k(A T(t)).
- Logistic growth equation: P'(t) = rP(t)(1 P(t)/N).
- A differential equation of the form

$$M(x,y)dx + N(x,y)dy = 0$$

is exact if and only if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$. The general solution of an exact equation is of the form F(x, y) = C where $\frac{\partial F}{\partial x} = M$ and $\frac{\partial F}{\partial y} = N$.

• For an initial value problem $x'(t) = f(t, x), x(t_0) = x_0$, Euler's Method finds approximation of solution by

$$x_{i+1} = x_i + f(t_i, x_i)\Delta t$$
$$t_{i+1} = t_i + \Delta t$$

 $(i = 1, 2, 3, \ldots)$, given a stepsize Δt .

• Errors in numerical methods:

Method	Error
Euler's	$\sim \Delta t$
Improved Euler's	$\sim (\Delta t)^2$
4th-Order Runge-Kutta	$\sim (\Delta t)^4$

• The Wronskian of two solutions $x_1(t)$ and $x_2(t)$ of the second-order linear homogeneous equation x'' + p(t)x' + q(t)x = 0 is the determinant

$$W(x_1, x_2)(t) = \begin{vmatrix} x_1(t) & x_2(t) \\ x'_1(t) & x'_2(t) \end{vmatrix}.$$

If $W(x_1, x_2)(t) \neq 0$ for all values of t, then $x_h(t) = C_1 x_1(t) + C_2 x_2(t)$ is a general solution of x'' + p(t)x' + q(t)x = 0.

• The method of variation of parameters finds a particular solution x_p of the nonhomogeneous equations x'' + p(t)x' + q(t)x = f(t) in the form $x_p(t) = v_1(t)x_1(t) + v_2(t)x_2(t)$ where $\{x_1(t), x_2(t)\}$ is a fundamental solution set to the homogeneous equation x'' + p(t)x' + q(t)x = 0 and

$$v_1(t) = -\int \frac{x_2(t)f(t)}{W(x_1, x_2)(t)} dt$$

and

$$v_2(t) = \int \frac{x_1(t)f(t)}{W(x_1, x_2)(t)} dt$$

• For the Cauchy-Euler equation $at^2x'' + btx' + cx = 0$, using the substitution $s = \ln t$ (this means that $t = e^s$) with $s'(t) = 1/t = e^{-s}$ and letting $x(t) \equiv Y(s)$, the original equation becomes the linear equation aY''(s) + (b-a)Y'(s) + cY(s) = 0.