Formula Sheet

e Table of Laplace Transforms

Functional Properties:
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Specific Transforms:
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For a differential equation of the form

dx

5 TP®)z(t) = (),

the general solution is in the form

where

For a differential equation of the form

= plt)e + a0, n 0,1,

use the substitution v(t) = (z(t))!~".

Newton’s Law of Cooling: T"(t) = k(A — T'(t)).
Logistic growth equation: P’'(t) = rP(t)(1 — P(t)/N).
A differential equation of the form

M(z,y)dx + N(z,y)dy =0
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is exact if and only if —— = ——. The general solution of an exact

oy ox
equation is of the form F(x,y) = C where %—5 = M and %—5 =N.

For an initial value problem 2/(t) = f(t, ), z(t9) = x¢, Euler’s Method
finds approximation of solution by

Tip1 = x; + f(ti, x;) At
tiv1 =t + At

(1=1,2,3,...), given a stepsize At.

Errors in numerical methods:

’ Method ‘ Error ‘
Euler’s ~ At
Improved Euler’s ~ (At)?
4th-Order Runge-Kutta | ~ (At)?




e The Wronskian of two solutions x;(t) and x2(t) of the second-order
linear homogeneous equation x” +p(t)z’ +q(t)x = 0 is the determinant

Wiz, z2)(t) =

If W(xq,22)(t) # 0 for all values of ¢, then z,(t) = Crx1(t) + Coza(t)
is a general solution of z” + p(t)z’ + ¢(t)x = 0.

e The method of variation of parameters finds a particular solution x,, of
the nonhomogeneous equations x” + p(t)z’ + q(t)x = f(t) in the form
xp(t) = vi(t)x1(t) + va(t)xa(t) where {z1(t),z2(t)} is a fundamental
solution set to the homogeneous equation z” + p(t)x’ + q(t)x = 0 and
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e For the Cauchy-Euler equation at?z” + btz’ + cx = 0, using the sub-
stitution s = In¢ (this means that ¢t = e®) with §/(t) = 1/t = e~® and
letting x(t) = Y (s), the original equation becomes the linear equation
aY"(s) 4+ (b—a)Y'(s) +cY(s) = 0.



