Formula Sheet

- Table of Laplace Transforms

Functional Properties:

$f(t)=\mathfrak{L}^{-1}(F(s))$	$F(s)=\mathfrak{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t$
$\alpha f(t)+\beta g(t)$	$\alpha F(s)+\beta G(s)$
$f^{\prime}(t)$	$s F(s)-f(0)$
$f^{\prime \prime}(t)$	$s^{2} F(s)-s f(0)-f^{\prime}(0)$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)$
$t f(t)$	$-\frac{d}{d s}[F(s)]$
$t^{n} f(t)$	$(-1)^{n} \frac{d^{n}}{d s^{n}}[F(s)]$
$e^{a t} f(t)$	$F(s-a)$
$u(t-c) f(t-c)($ for $c \geq 0)$	$e^{-c s} F(s)$
$u(t-c) f(t)($ for $c \geq 0)$	$e^{-c s} \mathfrak{L}(f(t+c))$

Specific Transforms:

$f(t)=\mathfrak{L}^{-1}(F(s))$	$F(s)=\mathfrak{L}(f(t))$
1	$\frac{1}{s}$
t	$\frac{1}{s^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$
$e^{a t}$	$\frac{1}{s-a}$
$t e^{a t}$	$\frac{1}{(s-a)^{2}}$
$\sin (b t)$	$\frac{b}{s^{2}+b^{2}}$
$\cos (b t)$	$\frac{s}{s^{2}+b^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$u(t-c)($ for $c \geq 0)$	$\frac{e^{-c s}}{s}$

- For a differential equation of the form

$$
\frac{d x}{d t}+p(t) x(t)=q(t)
$$

the general solution is in the form

$$
x(t)=\frac{1}{\mu(t)}\left(\int \mu(t) q(t) d t+C\right)
$$

where

$$
\mu(t)=e^{\int p(t) d t}
$$

- For a differential equation of the form

$$
\frac{d x}{d t}=p(t) x+q(t) x^{n}, n \neq 0,1
$$

use the substitution $v(t)=(x(t))^{1-n}$.

- Newton's Law of Cooling: $T^{\prime}(t)=k(A-T(t))$.
- Logistic growth equation: $P^{\prime}(t)=r P(t)(1-P(t) / N)$.
- A differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is exact if and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. The general solution of an exact equation is of the form $F(x, y)=C$ where $\frac{\partial F}{\partial x}=M$ and $\frac{\partial F}{\partial y}=N$.

- For an initial value problem $x^{\prime}(t)=f(t, x), x\left(t_{0}\right)=x_{0}$, Euler's Method finds approximation of solution by

$$
\begin{gathered}
x_{i+1}=x_{i}+f\left(t_{i}, x_{i}\right) \Delta t \\
t_{i+1}=t_{i}+\Delta t
\end{gathered}
$$

$(i=1,2,3, \ldots)$, given a stepsize Δt.

- Errors in numerical methods:

Method	Error
Euler's	$\sim \Delta t$
Improved Euler's	$\sim(\Delta t)^{2}$
4th-Order Runge-Kutta	$\sim(\Delta t)^{4}$

- The Wronskian of two solutions $x_{1}(t)$ and $x_{2}(t)$ of the second-order linear homogeneous equation $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0$ is the determinant

$$
W\left(x_{1}, x_{2}\right)(t)=\left|\begin{array}{cc}
x_{1}(t) & x_{2}(t) \\
x_{1}^{\prime}(t) & x_{2}^{\prime}(t)
\end{array}\right| .
$$

If $W\left(x_{1}, x_{2}\right)(t) \neq 0$ for all values of t, then $x_{h}(t)=C_{1} x_{1}(t)+C_{2} x_{2}(t)$ is a general solution of $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0$.

- The method of variation of parameters finds a particular solution x_{p} of the nonhomogeneous equations $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=f(t)$ in the form $x_{p}(t)=v_{1}(t) x_{1}(t)+v_{2}(t) x_{2}(t)$ where $\left\{x_{1}(t), x_{2}(t)\right\}$ is a fundamental solution set to the homogeneous equation $x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0$ and

$$
v_{1}(t)=-\int \frac{x_{2}(t) f(t)}{W\left(x_{1}, x_{2}\right)(t)} d t
$$

and

$$
v_{2}(t)=\int \frac{x_{1}(t) f(t)}{W\left(x_{1}, x_{2}\right)(t)} d t
$$

- For the Cauchy-Euler equation $a t^{2} x^{\prime \prime}+b t x^{\prime}+c x=0$, using the substitution $s=\ln t$ (this means that $t=e^{s}$) with $s^{\prime}(t)=1 / t=e^{-s}$ and letting $x(t) \equiv Y(s)$, the original equation becomes the linear equation $a Y^{\prime \prime}(s)+(b-a) Y^{\prime}(s)+c Y(s)=0$.

