Homework 1 due September 12th Numerical Analysis, Fall 2016

Please show your work. Exercises in 1-5 should be done by hand. For the programming exercises in Chapter 4, hand in your Matlab codes and outputs. (You can use the matlab function *diary* to copy your command window output.) Page http://academics.davidson.edu/math/chartier/Numerical/matlab.html contains matlab M-files mentioned in the assignments, but you can (and are encouraged to) write your routines.

- 1. (*Intermediate Value Theorem.*) Show that the following equations have at least one solution in the given intervals.
 - (a) $2x\cos(2x) (x-2)^2 = 0$, intervals [2, 3] and [3, 4]
 - (b) $x (\ln x)^x = 0$, interval [4, 5]
- 2. Find $\max_{0 \le x \le 1} |f(x)|$ for $f(x) = (2 e^x + 2x)/3$.
- 3. (Rolle's Theorem.) Given $f(x) = 1 e^x + (e 1)\sin((\pi/2)x)$, show that f'(x) is 0 at least once in the interval [0, 1].
- 4. Let $f(x) = x^3$.
 - (a) Find the second Taylor polynomial $P_2(x)$ about $x_0 = 0$.
 - (b) Find $R_2(0.5)$ and the error in using $P_2(x)$ to approximate f(0.5).
 - (c) Repeat part (a) using $x_0 = 1$.
 - (d) Repeat part (b) using the polynomial from part (c).
- 5. Use three iterations of the Bisection method to find approximation of the root of $f(x) = \sqrt{x} \cos x = 0$ on [0, 1].

Programming part:

- Chapter 4, Exercise 2(a).
- Chapter 4, Exercise 18.